Semiparametric Inference for Nonmonotone Missing-Not-at-Random Data: The No Self-Censoring Model
نویسندگان
چکیده
منابع مشابه
Semiparametric Models for Left Truncation and Right Censoring with Missing Censoring Indicators
We derive the asymptotic distributions of a semiparametric Dikta-type estimator and an inverse probability weighted type estimator of a survival function for a missing censoring indicator left truncated model and provide a theoretical comparison study.
متن کاملimputation in missing not at random snps data using em algorithm
the relation between single nucleotide polymorphisms (snps) and some diseases has been concerned by many researchers. also the missing snps are quite common in genetic association studies. hence, this article investigates the relation between existing snps in dnmt1 of human chromosome 19 with colorectal cancer. this article aims is to presents an imputation method for missing snps not at random...
متن کاملAdditive hazards regression with censoring indicators missing at random.
In this article, the authors consider a semiparametric additive hazards regression model for right-censored data that allows some censoring indicators to be missing at random. They develop a class of estimating equations and use an inverse probability weighted approach to estimate the regression parameters. Nonparametric smoothing techniques are employed to estimate the probability of non-missi...
متن کاملEmpirical likelihood semiparametric nonlinear regression analysis for longitudinal data with responses missing at random
This paper develops the empirical likelihood (EL) inference on parameters and baseline function in a semiparametric nonlinear regression model for longitudinal data in the presence of missing response variables. We propose two EL-based ratio statistics for regression coefficients by introducing the working covariance matrix and a residual-adjusted EL ratio statistic for baseline function. We es...
متن کاملSensitivity analyses for trials with missing data, assuming missing not at random mechanisms
In randomised trials with missing data, it is not uncommon for the observation of the outcome to depend on the outcome itself. For example in behavioural trials on smoking cessation, weight loss, or alcohol reduction, unsuccessful participants may be less willing to disclose their outcome than those that are more successful. These Missing Not At Random (MNAR) data are problematic because they c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of the American Statistical Association
سال: 2021
ISSN: 0162-1459,1537-274X
DOI: 10.1080/01621459.2020.1862669